If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+20t-20=0
a = 1; b = 20; c = -20;
Δ = b2-4ac
Δ = 202-4·1·(-20)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{30}}{2*1}=\frac{-20-4\sqrt{30}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{30}}{2*1}=\frac{-20+4\sqrt{30}}{2} $
| 2+–3f=–13 | | 3x+10+6x-20=80 | | -15=y+23 | | 2/3x-1=3/2x+1 | | 6.2x=-6 | | -2(m+3)=-18 | | 2/2x=7/9 | | 3x+10+6x-200=100 | | x/(400+x)=0.15 | | 6x-6=-6-6x | | -25/12x=0 | | 1.2(x+4)=2.4x-7.2 | | 2(14x+x)=x+19 | | 4/8x+1/4x=50 | | -19-3x=19-3x | | 2x-2(4x+3)=6-6x | | 3n +2=−17 | | 4=9–3(2x+1)–5x | | 2=3n−16 | | .5x+.75x=-53 | | 2x+18.2=2.8x+1.4 | | 8.5x-11.5+8.5x-11.5=14x+4 | | 7(-3x+12)=-55 | | x/400+x=0.15 | | 72x=48 | | 60x+57.95=42.95x | | x-5=-3.3 | | 3a+15=25 | | 2x+18.2=2.7+1.4 | | 57.95x+60=42.95x | | X4=4x2 | | x^2-16=59 |